MARYLAND DEPARTMENT OF THE ENVIRONMENT 1800 Washington Boulevard, Suite 715 • Baltimore Maryland 21230-1720 410-537-3000 • 1-800-633-6101 • <u>http://www.mde.state.md.us</u> Air and Radiation Management Administration Air Quality Compliance Program 410-537-3220

FORM 1:

<u>GENERAL FACILITY INFORMATION</u> EMISSIONS CERTIFICATION REPORT

Calendar Year: 2022

				Do Not Write in	n This Space
A. FACILITY IDEN Facility Name	TIFICATION Gude Land	lfill		Date Received Region	nal
Address 600 East Guo	de Drive			Date Received State	
City Rockville	County Montgom	nery Zip Code 20850)	AIRS Code	
B. Briefly describe th	ne major function of the	facility		FINDS Code	
	Closed	Landfill		SIC Code	
				Facility Number:	
				TEMPO ID:	
C. SEASONAL PROI	DUCTION (%, if applica	ble)		Reviewed by:	
Winter (DecFeb.)	<u>Spring</u> (Mar – May)	Summer (Jun – Aug)	<u>Fall</u> $(Sept - Nov)$		
25	25	25	25		
				Name	Date
D. Explain any increa	ases or decreases in emis	ssions from the previous	calendar year for each	registration at this faci	lity.
Increases or decreases	s in emissions are gener	ally due to changes in th	ne LFG generation rate	e from the landfill and t	the LFG collection
rate by the GCCS.					
E CONTROL DEV	ICE INFORMATION (f	or NOv and VOC sources	only)		
E. CONTROL DEV		of NOX and VOC sources	onry)		
Contro	ol Device	Capture I	Efficiency	Removal E	fficiency
Landfill Gas Collection	Flare System	95	5%	98% (AP-42 Typical 0	Control Efficiency)

I am familiar with the facility and the installations and sources for which this report is submitted. I have personally examined the information in this report, which consists of 30 pages (including attachments), and certify that the information is correct to the best of my knowledge.

Andrew Kays	Executive Director		
Name (Print/Type)	Title	Date	
		(410) 333-2730	
Signature		Telephone	

CRITERIA AIR POLLUTANTS EMISSIONS CERTIFICATION REPORT

Calendar Year: 2022

Facility Name: Gude Landfill

Facility ID: _____

Pollutant: _____

1	1					r				1	1			.
Equipment Description/	SCC			Actual E	missions	Op	erating Sch	edule (Act	tual)	TOSD	Oper	rating Schee	lule	Emissions
Registration No.	Number	Fuel		Tons/yr	Lbs/day	Hrs/dy	Dys/wk	Wk/yr	Days/yr	Lbs/dy	Hrs/dy	Start	End	Methods
			S	•			_							
Landfill			F	0.33	1.81	24	7	52	365	1.81	24			C3
Flame 4		150	S	0.03	0.16	24	7	4.5	110	0.16	24			C3
Flare 1		LFG	F			24	/	15	110		24			
Flare 2			S	0.05	0.27	24	7	24	240	0.27	24			C3
Flare 2		LFG	F			24	/	54	240		24			
			S											
			F											
			S											
			F											
			S											
			F											
			S											
			F											
			S											
			F											
			S											
			F											
			S											
[F											
Total				0.41	2.24					2.24				

S - Stack Emissions

F - Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of the source

<u>TOSD</u>: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption Technique A4-Solid Absorption Technique A5-Freezing Out Technique A9-Other, Specify C1-User calculated based on source test or other measurement
C2-User calculated based on material balance using engineering knowledge of the process
C3-User calculated based on AP-42
C4-User calculated by best guess/engineering Judgment

<u>CRITERIA AIR POLLUTANTS</u> EMISSIONS CERTIFICATION REPORT

Calendar Year: _____

Facility Name: Gude Land

Gude Landfill

Facility ID: _____

Pollutant: NOx

Equipment Description/	SCC			Actual Er	missions	Op	erating Sch	edule (Act	tual)	TOSD	Oper	ating Scheo	lule	Emissions
Registration No.	Number	Fuel		Tons/yr	Lbs/day	Hrs/dy	Dys/wk	Wk/yr	Days/yr	Lbs/dy	Hrs/dy	Start	End	Methods
1 1011			S	Ť		24	_	50	265		24			
Landfill			F	N/A	N/A	24	/	52	365	N/A	24			
Eleve 4		150	S	0.71	3.89	24	7	4.5	110	3.89	24			C3
Flare 1		LFG	F			24	/	15	110		24			
Flore 2		150	S	1.39	7.62	24	7	24	240	7.62	24			C3
Flare 2		LFG	F			24	/	34	240		24			
			S											
			F											
			S											
			F											
			S											
			F											
			S											
			F											
			S											
			F											
			S											
			F											
			S											
[F											
Total				2.10	11.51					11.51				

S - Stack Emissions

F - Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of the source

<u>TOSD</u>: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption Technique A4-Solid Absorption Technique A5-Freezing Out Technique A9-Other, Specify C1-User calculated based on source test or other measurement
C2-User calculated based on material balance using engineering knowledge of the process
C3-User calculated based on AP-42
C4-User calculated by best guess/engineering Judgment

CRITERIA AIR POLLUTANTS EMISSIONS CERTIFICATION REPORT

Calendar Year: _____

End

Emissions

Methods

C3

C3

Facility ID: ____ Gude Landfill SOx Facility Name: Pollutant: SCC **Actual Emissions Operating Schedule (Actual)** TOSD **Operating Schedule** Equipment Description/ Registration No. Fuel Hrs/dy Dys/wk Wk/yr Number Tons/yr Lbs/day Days/yr Lbs/dy Hrs/dy Start S 7 Landfill 24 52 365 24 F N/A N/A N/A S 0.13 0.71 0.71 7 Flare 1 LFG 24 15 110 24 F S 0.26 1.42 1.42 Flare 2 LFG 24 7 34 240 24 F S F S F S F S F S F S F S F Total 0.39 2.13 2.13

S - Stack Emissions

F - Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of the source

TOSD: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption Technique A4-Solid Absorption Technique A5-Freezing Out Technique A9-Other, Specify

C1-User calculated based on source test or other measurement C2-User calculated based on material balance using engineering knowledge of the process C3-User calculated based on AP-42 C4-User calculated by best guess/engineering Judgment

Gude Landfill

CRITERIA AIR POLLUTANTS EMISSIONS CERTIFICATION REPORT

Calendar Year: 2022

CO

Facility ID: ____ Facility Name: Pollutant: SCC **Actual Emissions Operating Schedule (Actual)** TOSD **Operating Schedule** Emissions Equipment Description/ Registration No. Fuel Dys/wk Wk/yr Methods Number Tons/yr Lbs/day Hrs/dy Days/yr Lbs/dy Hrs/dy Start End S 7 Landfill 24 52 365 24 F N/A N/A N/A S 1.76 9.64 9.64 C3 7 Flare 1 LFG 24 15 110 24 F S 3.49 19.12 19.12 C3 Flare 2 LFG 24 7 34 240 24 F S F S F S F S F S F S F S F Total 5.25 28.76 28.76

S - Stack Emissions

F - Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of the source

TOSD: Typical Ozone Season Day means a typical day of that period of the year during which conditions for photochemical conditions are most favorable, which is generally during sustained periods of direct sunlight and warm temperatures (April-September). This section needs to be completed only for VOC and NOx sources.

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption Technique A4-Solid Absorption Technique A5-Freezing Out Technique A9-Other, Specify

C1-User calculated based on source test or other measurement C2-User calculated based on material balance using engineering knowledge of the process C3-User calculated based on AP-42 C4-User calculated by best guess/engineering Judgment

FORM 3: PM

EMISSIONS CERTIFICATION REPORT

Particulate Matter

Calendar Year: ____

Facility Name: _____Gude Landfill

Facility ID: _____

Pollutant: PM

Fauipment Description/	SCC			PM – Fi	ilterable	PM 10 –	Filterable	PM 2.5 –	Filterable	PM Cond	lensable	Operation	Emissions Methods
Registration No.	Number	Fuel		Tons/yr	Lbs/day	Tons/yr	Lbs/day	Tons/yr	Lbs/day	Tons/yr	Lbs/day	Days/yr	
Londfill			S									265	
Landini			F	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	305	C3
Flare 1		150	S	0.04	0.22	0.04	0.22	0.04	0.22	0.11	0.60	242	C3
Flate 1		LFG	F									545	
Elaro 2			S	0.07	0.38	0.07	0.38	0.07	0.38	0.22	1.21		C3
Fidle 2		LFG	F										
			S										
			F										
			S										
			F										
			S									_	
			F										
			S										
			F										
			S									_	
			F									<u> </u>	
			S									-	
			F									<u> </u>	
			S									-	
			F					<u> </u>				<u> </u>	
Total				0.11	0.60	0.11	0.60	0.11	0.60	0.33	1.81		

S - Stack Emissions

F - Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of the source

Fuel: Include emissions for each fuel used. If more than one fuel is used, calculate and list emissions separately for each fuel.

Emission Estimation Method A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption Technique A4-Solid Absorption Technique A5-Freezing Out Technique A9-Other, Specify

C1-User calculated based on source test or other measurement
C2-User calculated based on material balance using engineering knowledge of the process
C3-User calculated based on AP-42
C4-User calculated by best guess/engineering Judgment

FORM 4:

TOXIC AIR POLLUTANTS

2022 Calendar Year:

EMISSIONS CERTIFICATION REPORT

Gude Landfill
 Facility Name:

 Facility ID:

031-9-0738M

Hydrogen Chloride Pollutant: _____

*

	A	ctual Emissior	15]		
Equipment Description/ Registration Number ¹	Tons/yr	Lbs/day	Lbs/hr	Control Device**	% Efficiency	
Landfill		-	-	О	0	* Please attach all calculations.
Flare 1	0.1	0.37	0.0	0	98	* See Attachment 1 for the minimum reporting values
Flare 2	 0.1	0.73	0.0	0	98	** <u>Control Device</u>
						B = Baghouse $ESP = Electrostatic Precipitator$ $A = Afterburner$ $C = Condenser$ $AD = Adsorbtion$
						O = Other
TOTALS	0.2	1.10	0.0			

¹Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

1/09/08

FORM 5:

BILLABLE TOXIC AIR POLLUTANTS

Calendar Year: 2022

Emissions Certification Report

Facility Name: _____

O31-9-0738M

	CAS		Ac	tual Emission	ns	Estimation
Chemical Name	Number		Tons/year	Lbs/day	Lbs/hr	Method
		S	0.0	0.0	0.0	C3
carbon disulfide	75-15-0	F	0.0	0.0	0.0	C3
		S	0.0	0.0	0.0	C3
carbonyl sulfide	463-58-1	F	0.0	0.0	0.0	C3
		S	N/A	N/A	N/A	
chlorine	7782-50-5	F	N/A	N/A	N/A	
		S	N/A	N/A	N/A	
cyanide compounds	57-12-5	F	N/A	N/A	N/A	
		S	0.2	1.10	0.0	C3
hydrochloric acid	7647-01-0	F	N/A	N/A	N/A	
		S	N/A	N/A	N/A	
hydrogen fluoride	7664-39-3	F	N/A	N/A	N/A	
		S	0.0	0.0	0.0	C3
methyl chloroform	71-55-6	F	0.0	0.0	0.0	C3
		S	0.0	0.0	0.0	C3
methylene chloride	75-09-2	F	0.0	0.1	0.0	C3
		S	0.0	0.0	0.0	C3
perchloroethylene	127-18-4	F	0.0	0.1	0.0	C3
		S	N/A	N/A	N/A	
phosphine	7803-51-2	F	N/A	N/A	N/A	
		S	N/A	N/A	N/A	
titanium tetrachloride	7550-45-0	F	N/A	N/A	N/A	
TOTALS			0.2	1.30	0.0	

Emission Estimation Method

A1-U.S. EPA Reference Method A2-Other Particulate Sampling Train A3-Liquid Absorption Technique A4-Solid Absorption Technique A5-Freezing Out Technique A9-Other, Specify

C1-User calculated based on source test or other measurement
C2-User calculated based on material balance using engineering knowledge of the process
C3-User calculated based on AP-42
C4-User calculated by engineering judgment
C5-User calculated based on a State or local agency factor
C6-New construction, not operational
C7-Source closed, operation ceased
C8-Computer calculated based on standards

This form is to include only the chemicals identified.

S-Stack Emissions

F-Fugitive Emissions

Daily emissions (lbs/day) are lbs/operating day of the source

PLEASE NOTE: Be sure to attach all data and calculations necessary to support the emissions figures shown above.

FORM 6: Greenhouse Gases

GREENHOUSE GAS AIR POLLUTANTS

2022

Calendar Year:

*

EMISSIONS CERTIFICATION REPORT

Gude Landfill Facility Name: ______ Facility ID: _____

031-9-0738M

Carbon Dioxide Pollutant:

This form must be used to report Greenhouse gas emissions:

> • carbon dioxide (CO2) • methane (CH4) • nitrous oxide (N2O)

• hydrofluorocarbons (HFCs) • perfluorocarbons (PFCs) • sulfur hexafluoride (SF6)

* Use a separate form for each pollutant.

* Please attach all calculations.

	А	ctual Emission	IS
Equipment Description/ Registration Number ¹	Tons/yr	Lbs/day	Lbs/hr
Landfill	387.54	2,123.51	88.48
Flare 1	1,726.27	9,459.01	394.13
Flare 2	3,411.46	18,692.93	778.87
TOTALS	5,525.27	30,275.45	1,261.48

¹Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

1/15/08

FORM 6: Greenhouse Gases

GREENHOUSE GAS AIR POLLUTANTS

2022

Methane

Calendar Year:

*

EMISSIONS CERTIFICATION REPORT

Gude Landfill
Facility Name:

031-9-0738M Facility ID:

Pollutant:

	A	Actual Emissions						
Equipment Description/ Registration Number ¹	Tons/yr	Lbs/day	Lbs/hr					
Landfill	86.62	474.63	19.78					
Flare 1	0.06	0.33	0.01					
Flare 2	0.12	0.12 0.66						
TOTALS	86.80	475.62	19.82					

This form must be used to report <u>Greenhouse gas emissions</u>: • carbon dioxide (CO2) • methane (CH4) • nitrous oxide (N2O)

- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- sulfur hexafluoride (SF6)

* Use a separate form for each pollutant.

* Please attach all calculations.

¹Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

1/15/08

FORM 6: Greenhouse Gases

GREENHOUSE GAS AIR POLLUTANTS

2022

Calendar Year:

EMISSIONS CERTIFICATION REPORT

Gude Landfill Facility Name: ______ Facility ID: _____

031-9-0738M

Nitrous Oxide Pollutant:

This form must be used to report Greenhouse gas emissions:

> • carbon dioxide (CO2) • methane (CH4) • nitrous oxide (N2O)

• hydrofluorocarbons (HFCs) • perfluorocarbons (PFCs) • sulfur hexafluoride (SF6)

* Use a separate form for each pollutant.

* Please attach all calculations.

*

	Α	ctual Emissior	15
Equipment Description/ Registration Number ¹	Tons/yr	Lbs/day	Lbs/hr
Landfill	N/A	N/A	N/A
Flare 1	0.01	0.00	
Flare 2	0.02	0.00	
TOTALS	0.03	0.16	0.01

¹Emissions must be broken down by equipment registration number (ex. 9-0076, 9-0077)

1/15/08

ATTACHMENT 1

(EMISSION CALCULATIONS)

Table 1. Projected LFG Generation Rates

Gude Landfill, Rockville, MD

					LFG
	Disposal	Refuse	Disposal	Refuse	Generation
	Rate	In-Place	Rate	In-Place	Rate
Year	(tons/yr)	(tons)	(Ma/yr)	(Mg)	(scfm)
1965	388 900	0	352 804	0	0
1966	388 900	388,900	352,804	352 804	187
1967	388,900	777 800	352,804	705.608	366
1968	388,900	1 166 700	352,004	1 058 412	538
1060	388,900	1,100,700	352,004	1,030,412	704
1909	388,900	1,333,000	352,804	1,411,217	863
1970	388,900	2 333 400	352,804	2 116 825	1.016
1771	299,000	2,333,400	252,004	2,110,023	1,010
1972	388 900	2,722,300	352,804	2,409,029	1,103
1973	388,900	3,111,200	352,004	2,022,433	1,304
1774	295 750	2 990 000	240.046	2 529 0/1	1,437
1975	290 550	3,889,000	245,220	2 077 000	1,309
1970	202.450	4,274,750	254.025	4 222 217	1,075
1977	414 550	4,033,300	376.073	4,223,217	1,809
1970	414,330	5,047,730	375 348	4,377,242	2,050
1979	413,750	5,402,300	272,340	4,900,010	2,030
1960	410,900	5,870,050	274 500	5,330,003	2,100
1082	187 /62	6 600 766	170.062	6 077 025	2,201
1902	0	6 007 220	0	6 247 097	2,309
1903	0	6 007 220	0	6 247,907	2,360
1904	0	6 007 220	0	6 247,907	2,292
1965	0	6 007 220	0	6 247,907	2,202
1900	0	0,007,220	0	6,247,967	2,110
1907	0	6 007 220	0	6 247,907	2,033
1966	0	0,007,220	0	6,247,967	1,955
1969	0	0,007,220	0	0,247,907	1,077
1990	0	6 007 220	0	6 247,907	1,603
1002	0	6 887 228	0	6 247,907	1,752
1992	0	6 887 228	0	6 247,987	1,004
100/	0	6 887 228	0	6 247 087	1,577
1994	0	6 887 228	0	6 247 987	1,530
1996	0	6 887 228	0	6 247 087	1,470
1997	0	6 887 228	0	6 247 987	1,410
1997	0	6 887 228	0	6 247 987	1 309
1999	0	6 887 228	0	6 247 987	1,303
2000	0	6 887 228	0	6 247 987	1,200
2000	0	6 887 228	0	6 247 987	1 161
2001	0	6 887 228	0	6 247 987	1,101
2002	0	6 887 228	0	6 247 987	1,110
2004	0	6 887 228	0	6 247 987	1,030
2005	0	6 887 228	0	6 247 987	989
2006	0	6 887 228	0	6 247 987	951
2007	0	6 887 228	0	6 247 987	913
2008	0	6 887 228	0	6 247 987	878
2009	0	6 887 228	0	6 247 987	843
2010	0	6.887 228	0	6.247 987	810
2011	0	6.887 228	0	6.247 987	778
2012	0	6.887.228	0	6.247.987	748
2013	0	6.887.228	0	6.247.987	719
2014	0	6.887 228	0	6.247 987	690
2015	0	6.887.228	0	6.247.987	663
2016	0	6.887.228	0	6.247.987	637
2017	0	6.887 228	0	6.247 987	612
2018	0	6.887.228	0	6.247.987	588
2019	0	6.887.228	0	6.247.987	565
2020	0	6.887 228	0	6.247 987	543
2021	0	6.887.228	0	6,247,987	522
2022	0	6 887 228	0	6 247 987	501

Methane Content of LFG Adjusted to:

Selected Decay Rate Constant (k):

Selected Ultimate Methane Recovery Rate (Lo): NMOC Concentration in LFG:

50%

0.04 yr⁻¹ 100 m³/Mg 595 ppmv as Hexane

Table 2. Flare Stack and Fugitive Emissions

	Total LFG Flow	Total LFG Flow	Average CH4	Total CH4 Flow	Total CH4 Flow	Total Estimated	Average CO ₂
Month	(MM scf)	(MM scf)	(% by vol.)	(MM scf)	(MM scf)	(MM scf)	(% by vol.)
January	0.04	9.15	34.90%	0.01	3.19	1.11	24.6%
February	0.00	11.49	39.01%	0.00	4.48	1.39	26.4%
March	0.00	14.05	35.61%	0.00	5.00	1.71	25.3%
April	0.00	13.43	34.58%	0.00	4.64	1.63	25.1%
May	13.08	3.98	35.40%	4.63	1.41	0.48	24.6%
June	17.71	0.00	37.23%	6.59	0.00	0.00	25.5%
July	0.99	9.88	27.16%	0.27	2.68	1.20	18.2%
August	0.00	14.62	32.34%	0.00	4.73	1.78	22.4%
September	0.00	15.18	27.34%	0.00	4.15	1.84	18.7%
October	3.54	11.84	25.96%	0.92	3.07	1.44	20.0%
November	9.79	0.00	25.73%	2.52	0.00	0.00	20.7%
December	9.07	3.51	28.26%	2.56	0.99	0.43	21.2%
Total Average Total	54.21	107.13	32.15%	17.50	34.36	13.01	22.8%
	Flare 1			Flare 2			
Total LFG flow to flare :	54.21	MM scf	[Site-Specific]	107.13	MM scf	[Site-Specific]	
Average CH ₄ Content :	32.15%		[Site-Specific]	32.15%		[Site-Specific]	
Total CH ₄ flow to flare :	17.50	MM scf	[Site-Specific]	34.36	MM scf	[Site-Specific]	
Total estimated fugitive:	13.01	MM scf	[Site-Specific]				
Flare control efficiency :	98.0%		[Manufacturer]				
Site-specific heat content :	325.3	Btu/scf LFG	[Site-Specific]				
Collection Efficiency:	95.0%		[per EPA Part 98]				
GCCS Operation Hours :	8223	Hours	[Site-Specific]				
Annual Hours in Year:	8760	Hours					
Operation Fraction $(f_{Rec,n}) =$	0.9387	Hours/Hours	[per EPA Part 98]				

Step 1. NO_x Emissions

The NO_X emissions from the flare are calculated using the John Zink emission factor of 0.08 lb/MMBTU.

Using the NO_X emission rate factor, the site-specific heat content of the LFG, and the total LFG flow, NO_X emissions are:

= 0.08 lb N0_X/MMBTU \cdot Site-Specific Heat Content \cdot LFG Flow to Flare \cdot (1 ton / 2,000 lb)

-	0.71	tons NO_{χ} flare 1 em	issions	1.39	tons NO_{χ} flare 2 em	lissions
where: Total LFG Flow to Flare 1 Site-Specific Heat Conte	L = nt =	54.21 325.3	MMscf MMBTU/MMscf	where: Total LFG Flow to Flare 2 = Site-Specific Heat Content =	107.13 325.3	MMscf MMBTU/MMscf

Step 3. CO Emissions

The CO emissions from the flare are calculated using the John Zink emission factor of 0.2 lb CO/MMBTU.

Using the CO emission rate factor, the site-specific heat content of the LFG, and the total LFG flow, CO emissions are:

= 0.2 lb CO/MMBTU · Site-Specific Heat Content of LFG · LFG Flow to Flare · (1 ton / 2,000 lb)

-	1.76	tons CO flare 1 emi	ssions	3	.49	tons CO flare 2 emis	ssions
whe	re:			where:			
Tota	I LFG Flow to Flare 1 =	54.21	MMscf	Total LFG Flow to Flare 2 =	-	107.13	MMscf
Site	Specific Heat Content =	325.3	MMBTU/MMscf	Site-Specific Heat Content	=	325.3	MMBTU/MMscf

Step 4. PM Emissions

The emission of filterable particulate matter (PM₁₀) is estimated using the flare emission factor published by the EPA's AP-42 (Section 2.4) of 17 lb PM/MMcf CH₄ and assuming that 25% of this total is filterable PM₁₀ and PM_{2.5}.

Using the site-specific methane flow rate and the AP-42 emission factor, the $\rm PM_{10}$ and $\rm PM_{2.5}$ emissions are:

= $(17 \text{ Ib PM/MMcf CH}_4 \cdot 25\%) \cdot (\text{Total CH}_4 \text{ Flow}) \cdot (1 \text{ ton}/2,000 \text{ Ib})$

-	0.04	tons PM ₁₀ and PM _{2.5} Flare 1		0.07	tons PM_{10} and $PM_{2.5}$ Flare 2
where:			where:		

Total CH ₄ Flow =	17.50	MMscf	Total CH ₄ Flow =	34.36	MMscf

The emission of condensable particulate matter (PM_{CON}) is estimated using the AP-42 flare emission factor of

17 lb PM/MMcf $\rm CH_4$ and assuming that 75% of this total is $\rm PM_{\rm CON}$

Using the site-specific methane flow rate to the flare, the $\ensuremath{\mathsf{PM}_{\mathsf{CON}}}$ emissions are:

= (17 lb PM/MMcf CH₄ \cdot 75%) \cdot (Total CH₄ Flow) \cdot (1 ton/2,000 lb)

-	0.11	tons condensable P	M Flare 1	0.22	tons condensable PN	/ Flare 2
where:				where:		
Total CH ₄ Flor	w =	17.50	MMscf	Total CH ₄ Flow =	34.36	MMscf

Step 5. SO_x Emissions

 SO_{X} emissions from the flare are estimated using the total CH_4 flow and the sulfur concentration factor published by the EPA's AP-42 (Section2.4) of 46.9 ppm.

To determine SO_x emission, first, calculate the volume flow of sulfur to the flare using AP-42 Eq. 2-4(3), which incorporates a CH₄ multiplication factor (for 50% CH₄ content of LFG) of 2.0:

= 2.0 · total CH₄ flow · (46.9 ppm / 1,000,000) · (1 cubic meter / 35.3 cf)

=	46.5	cubic meter sulfur			91.3	cubic meter	sulfur	
where: Total CH ₄ flow =		17,504,628	scf	where: Total CH_4 flow =		34,358	3,212	scf
, calculate the mass	flow of sulfur to t	the flare using AP-42 E	Eq. 2-4(4):					
= sulfur volume · 3	2 g/mol / (0.000	008205 · 1,000 g/kg ·	298 K)					
=	60.9	kg sulfur			119.5	kg sulfur		
where:				where:				
Sulfur volume flo Sulfur MW =)W =	46.5 32	cubic meter g/mol	Sulfur volume flow = Sulfur MW =			91.3 32	cubic meter g/mol

Ideal gas conversion factor =

LFG temperature =

0.00008205

298 Κ

298 Finally, calculate the SO $_{\rm X}$ emissions from the flare using AP-42 Eq. 2-4(7), which incorporates a mole ratio of SO $_2$

Κ

0.00008205

to sulfur of 2:

Next

= sulfur mass flow \cdot 2.0 \cdot 2.2 lb/kg \cdot (1 ton / 2,000 lb)

Ideal gas conversion factor =

LFG temperature =

-	0.13	tons SO _X flare 1 emissions		0.26	tons SO_{χ} flare 2 emissions
where: Sulfur mass flow =		60.9 kg	where: Sulfur mass flow =		119.5 kg

Step 6. VOC Emissions

VOC emissions from the flare and from the landfill (as fugitive emissions) are estimated using the total LFG flow to the flare, NMOC concentration of 595 ppm, and the assumption that 39% of NMOCs are VOCs [AP-42].

Step 6a. Flare VOC Emissions To determine VOC emissions, first, calculate the volume flow of NMOCs in the LFG at the flare:

= total LFG flow · (595 ppm / 1,000,000) / (35.3 ft^3/m^3)

=	913.7	cubic meter NMOC			1,805.7	cubic meter NMOC	
where: Total LFG flow NMOC Concen	= tration =	54,207,800 595.0	scf ppm	where: Total LFG flow NMOC Concent	= ration =	107,125,284 595.0	scf ppm
Next, calculate the mas	s flow of NMOC to	the flare:					
= NMOC volume	flow · 86.17 g/mo	ol / (0.00008205 · 1,00	00 g/kg · 298 K)				
=	3,220.1	kg NMOC			6,363.5	kg NMOC	
where: NMOC volume NMOC MW = Ideal gas conve LFG temperatu Next, calculate the mass = NMOC mass fle	flow = ersion factor = ure = ss flow of VOC to th ow · VOC content ·	913.7 86.17 0.00008205 298 he flare: 2.2 lb/kg· (1 ton / 2,0	cubic meter/yr g/mol K D0 lb)	where: NMOC volume NMOC MW = Ideal gas convo LFG temperatu	flow = ersion factor = re =	1,805.7 86.17 0.00008205 298	cubic meter/yr g/mol K
=	1.4	tons VOC			2.7	tons VOC	
where: NMOC mass flu VOC content of Next, calculate the unco	ow = f NMOC = ombusted flare en	3,220.1 39% nission of VOCs using t	kg [AP-42] ne flare VOC control efficient	where: NMOC mass flo VOC content of	w = NMOC =	6,363.5 39%	kg [AP-42]
the latest flare emission	n test:			-,			
= VOC mass flow	√·(1 - flare VOC co	ontrol efficiency)					

= 0.03	tons VOC flare 1 emissions 0.05				5 tons VOC flare 2 emissions		
where:			where:				
VOC mass flow =	1.4	tons	VOC mass flow =		2.7	tons	
Flare VOC control efficiency =	98.0%	[Manufacturer]	Flare VOC control efficience	cy =	98.0%	[Manufacturer]	

Step 6b. Fugitive VOC Emissions

To determine fugitive VOC emissions, first, calculate the volume flow of NMOCs in the estimated fugitive LFG flow:

= Total Fugitive LFG Flow · (595 ppm / 1,000,000) / (35.3 ft^3/m^3)

= 219.2 cubic meter NMOC where: Total fugitive LFG flow = 13,006,970 scf NMOC Concentration = 595.0 ppm

Next, calculate the fugitive mass flow of NMOC from the landfill:

= NMOC volume flow · 86.17 g/mol / (0.00008205 · 1,000 g/kg · 298 K)

= 772.6 kg NMOC

where:		
NMOC volume flow =	219.2	cubic meter/yr
NMOC MW =	86.17	g/mol
Ideal gas conversion factor =	0.00008205	
LFG temperature =	298	К

Next, calculate the fugitive mass flow of VOC from the landfill:

= NMOC mass flow · VOC content · 2.2 lb/kg · (1 ton / 2,000 lb)

=	0.33	tons VOC fugitive e	missions
where:			
NMOC mass flow =		772.6	kg
VOC content of NMOC =	-	39%	[AP-42]

Step 7. HAP Emissions

HAP emissions from the flare and from the landfill (as fugitive emissions) are estimated using the fugitive LFG flow, the LFG flow to the flare, and the default conentration of the HAPs typically found in LFG as provided in the EPA's AP-42 (Section 2.4).

The attached Table 3 presents a summary of HAP emissions. The following is a sample calculation for the emission of toluene, a HAP; other HAP emissions were determined via similar methods.

Step 7a. Flare HAP Emissions

HAP emissions from the flare and from the landfill (as fugitive emissions) are estimated using the LFG collection efficiency, the LFG generation rate, and the default concentration of the HAPs typically found in LFG as provided in the EPA's AP-42 (Section 2.4).

The attached Table 3 presents a summary of HAP emissions. The following is a sample calculation for the emission of toluene, a HAP; other HAP emissions were determined via similar methods.

The uncombusted flare emission of toluene are calculated based on the LFG flow to the flare.

To determine toluene flare emissions, first, calculate the volume flow of toluene in the LFG sent to the flare using

AP-42 Eq. 2-4(3):

= total LFG flow · (39.3 ppm / 1,000,000) · (1 cubic meter / 35.3 cf)

=	60.4	cubic meter toluene,	/yr	11	19.3	cubic meter toluene/	/yr
where: Total LFG flow = Toluene content =		54,207,800 39.3	scf ppm	where: Total LFG flow = Toluene content =		107,125,284 39.3	scf ppm

Next, calculate the mass flow of toluene using AP-42 Eq. 2-4(4):

= toluene volume flow \cdot 92.13 g/mol / (0.00008205 \cdot 1,000 g/kg \cdot 298 K)

=	227.4	kg toluene/yr		449.4	kg toluene/yr	
where:				where:		
Toluene volum	ne flow =	60.4	cubic meter/yr	Toluene volume flow =	119.3	cubic meter/yr
Toluene MW =		92.13	g/mol	Toluene MW =	92.13	g/mol
Ideal gas conv	ersion factor =	0.00008205		Ideal gas conversion factor =	0.00008205	
LFG temperatu	ure =	298	к	LFG temperature =	298	К

Next, calculate the uncombusted flare emissions of toluene using the flare HAP control efficiency determined during the latest flare emission test:

= toluene mass flow rate \cdot (1 - flare HAP control efficiency) \cdot (1 ton / 908 kg)

-	0	tons toluene flare 1	L emissions		0	tons toluene flare 2	emissions
where:				where:			
toluene mass flow =		227.4	kg/yr	toluene mass flow =		449.4	kg/yr
Flare HAP control efficienc	y =	98.0%	[Manufacturer]	Flare HAP control efficier	cy =	98.0%	[Manufacturer]

The fugitive emission of toluene is calculated based on the estimated fugitive LFG flow from the landfill.

To determine fugitive toluene emissions, first, calculate the volume flow of toluene in the estimated fugitive LFG using AP-42 Eq. 2-4(3):

= estimated fugitive LFG flow · (39.3 ppm / 1,000,000) · (1 cubic meter / 35.3 cf)

=	14.5	cubic meter toluene/yr		
where:				
Total LFG flow =		13,006,970	scf	
Toluene content =		39.3	ppm	

Next, calculate the mass flow of toluene using AP-42 Eq. 2-4(4):

= toluene volume flow \cdot 92.13 g/mol / (0.00008205 \cdot 1,000 g/kg \cdot 298 K)

= 54.6 kg toluene/yr where: Toluene volume flow = 14.5 cubic meter/yr Toluene MW = 92.13 g/mol Ideal gas conversion factor = 0.0008205 LFG temperature = 298 K

Next, calculate the fugitive emissions of toluene by converting the mass flow into tons:

= toluene mass flow rate (1 ton / 908 kg)

=

0 tons toluene fugitive emissions

where:			
toluene mass flow =	54.6	kg/yr	

Table 3. Flare 1 Toxic Air Pollutant Emissions

Methane flow to flare =	17.5	MM scf/yr [Table 2]
Flare operational =	365	days/yr
NMOC Content =	595	AP-42

Pollutant	Molecular AP-42 Weight Concentration		Pollutant	Destruction	Toxic Air Pollutants Emissions			
	(g/gmol)	(ppmv)		Linciency	(lb/day)	(lb/hr)	(tpy)	
1,1,1-Trichloroethane (methyl chloroform)	133.4	0.48	5.7	98.0%	0.0	0	0	
1,1,2,2-Tetrachloroethane	167.85	1.11	16.6	98.0%	0.0	0.0	0.0	
1,1-Dichloroethane (ethylidene dichloride)	98.96	2.35	20.7	98.0%	0.0	0	0	
1,1-Dichloroethene (vinylidene chloride)	96.94	0.20	1.7	98.0%	0.0	0.0	0	
1,2-Dichloroethane (ethylene dichloride)	98.96	0.41	3.6	98.0%	0.0	0.0	0.00	
1,2-Dichloropropane (propylene dichloride)	112.99	0.18	1.8	98.0%	0.0	0	0	
1,4-Dichlorobenzene	147.02	0.21	2.8	98.0%	0.0	0	0.0	
Acrylonitrile	53.06	6.33	30.0	98.0%	0.00	0.00	0.00	
Benzene	78.11	1.91	13.3	98.0%	0.00	0.00	0.0	
Carbon disulfide	76.14	0.58	3.9	98.0%	0.0	0.0	0	
Carbon tetrachloride	153.82	0.004	0.1	98.0%	0.0	0.0	0.00	
Carbonyl sulfide (carbon oxysulfide)	60.08	0.49	2.6	98.0%	0.0	0.0	0	
Chlorobenzene	112.56	0.25	2.5	98.0%	0.0	0.0	0	
Chloroethane (ethyl chloride)	64.51	1.25	7.2	98.0%	0.00	0.000	0.00	
Chloromethane (methyl chloride)	50.49	1.21	5.5	98.0%	0.0	0.0	0.0	
Dichloromethane (methylene chloride)	84.93	14.3	108.3	98.0%	0.0	0	0	
Ethylbenzene	106.17	4.61	43.7	98.0%	0.0	0	0	
n-Hexane	86.18	6.57	50.5	98.0%	0.0	0	0	
Hydrogen Chloride	36.46	42	136.6	0.0%	0.37	0.0	0.1	
Mercury (total)	200.59	0.000292	0.0	0.0%	0.000	0.0000	0.000	
Methyl Isobutyl Ketone (MIBK)	100.16	1.87	16.7	98.0%	0.0	0	0	
Tetrachloroethylene (perchloroethylene)	165.83	3.73	55.2	98.0%	0.0	0	0	
Toluene	92.13	39.3	323.0	98.0%	0.0	0	0	
Trichloroethylene (trichloroethene)	131.39	2.82	33.1	98.0%	0.0	0	0	
Vinyl chloride (chloroethene)	62.5	7.34	40.9	98.0%	0.00	0.0	0.00	
Xylenes (o-, m-, p-, mixtures)	106.17	12.10	114.6	98.0%	0.0	0	0	
Total Air Toxics					0.37	0.00	0.10	

Note: Concentrations are based on default LFG concentrations published in EPA's AP-42 Section 2.4.

Table 4. Flare 2 Toxic Air Pollutant Emissions

Methane flow to flare =	34.4	MM scf/yr [Table 2]
Flare operational =	365	days/yr
NMOC Content =	595	AP-42

Pollutant	Molecular Weight	AP-42 Concentration	AP-42 Pollutant centration inflow	Destruction	Toxic Air Pollutants Emissions			
	(g/gmol)	(ppmv)	(lb/yr)	Elliciency	(lb/day)	(lb/hr)	(tpy)	
1,1,1-Trichloroethane (methyl chloroform)	133.4	0.48	11.2	98.0%	0.0	0	0	
1,1,2,2-Tetrachloroethane	167.85	1.11	32.6	98.0%	0.0	0.0	0.0	
1,1-Dichloroethane (ethylidene dichloride)	98.96	2.35	40.7	98.0%	0.0	0	0	
1,1-Dichloroethene (vinylidene chloride)	96.94	0.20	3.4	98.0%	0.0	0.0	0	
1,2-Dichloroethane (ethylene dichloride)	98.96	0.41	7.1	98.0%	0.0	0.0	0.00	
1,2-Dichloropropane (propylene dichloride)	112.99	0.18	3.6	98.0%	0.0	0	0	
1,4-Dichlorobenzene	147.02	0.21	5.4	98.0%	0.0	0	0.0	
Acrylonitrile	53.06	6.33	58.8	98.0%	0.00	0.00	0.00	
Benzene	78.11	1.91	26.1	98.0%	0.00	0.00	0.0	
Carbon disulfide	76.14	0.58	7.7	98.0%	0.0	0.0	0	
Carbon tetrachloride	153.82	0.004	0.1	98.0%	0.0	0.0	0.00	
Carbonyl sulfide (carbon oxysulfide)	60.08	0.49	5.2	98.0%	0.0	0.0	0	
Chlorobenzene	112.56	0.25	4.9	98.0%	0.0	0.0	0	
Chloroethane (ethyl chloride)	64.51	1.25	14.1	98.0%	0.00	0.000	0.00	
Chloromethane (methyl chloride)	50.49	1.21	10.7	98.0%	0.0	0.0	0.0	
Dichloromethane (methylene chloride)	84.93	14.3	212.7	98.0%	0.0	0	0	
Ethylbenzene	106.17	4.61	85.7	98.0%	0.0	0	0	
n-Hexane	86.18	6.57	99.1	98.0%	0.0	0	0	
Hydrogen Chloride	36.46	42	268.1	0.0%	0.73	0.0	0.1	
Mercury (total)	200.59	0.000292	0.0	0.0%	0.000	0.0000	0.000	
Methyl Isobutyl Ketone (MIBK)	100.16	1.87	32.8	98.0%	0.0	0	0	
Tetrachloroethylene (perchloroethylene)	165.83	3.73	108.3	98.0%	0.0	0	0	
Toluene	92.13	39.3	634.0	98.0%	0.0	0	0	
Trichloroethylene (trichloroethene)	131.39	2.82	64.9	98.0%	0.0	0	0	
Vinyl chloride (chloroethene)	62.5	7.34	80.3	98.0%	0.00	0.0	0.00	
Xylenes (o-, m-, p-, mixtures)	106.17	12.10	224.9	98.0%	0.0	0	0	
Total Air Toxics					0.73	0.00	0.10	

Note: Concentrations are based on default LFG concentrations published in EPA's AP-42 Section 2.4.

Table 5. Fugitive Landfill Toxic Air Pollutant Emissions

Fugitive Methane Flow =	4.2	MM scf/yr [Table 2]
NMOC Content =	595	AP-42

Pollutant	Molecular Weight	Default Concentration	Pollutant inflow	Toxic Air Pollutants Emissions			
	(g/gillol)	(ppmv)	(lb/yr)	(lb/day)	(lb/hr)	(tpy)	
1,1,1-Trichloroethane (methyl chloroform)	133.4	0.48	1.4	0.0	0	0	
1,1,2,2-Tetrachloroethane	167.85	1.11	4.0	0.0	0.0	0.0	
1,1-Dichloroethane (ethylidene dichloride)	98.96	2.35	5.0	0.0	0	0	
1,1-Dichloroethene (vinylidene chloride)	96.94	0.20	0.4	0.0	0.0	0	
1,2-Dichloroethane (Ethylene dichloride)	98.96	0.41	0.9	0.0	0.0	0.00	
1,2-Dichloropropane (propylene dichloride)	112.99	0.18	0.4	0.0	0	0	
1,4-Dichlorobenzene	147.02	0.21	0.7	0.0	0	0.0	
Acrylonitrile	53.06	6.33	7.2	0.02	0.00	0.00	
Benzene	78.11	1.91	3.2	0.01	0.00	0.0	
Carbon disulfide	76.14	0.58	0.9	0.0	0.0	0	
Carbon tetrachloride	153.82	0.004	0.0	0.0	0.0	0.00	
Carbonyl sulfide (Carbon oxysulfide)	60.08	0.49	0.6	0.0	0.0	0	
Chlorobenzene	112.56	0.25	0.6	0.0	0.0	0	
Chloroethane (Ethyl chloride)	64.51	1.25	1.7	0.00	0.000	0.00	
Chloromethane (Methyl chloride)	50.49	1.21	1.3	0.0	0.0	0.0	
Dichloromethane (Methylene chloride)	84.93	14.3	25.9	0.1	0	0	
Ethylbenzene	106.17	4.61	10.4	0.0	0	0	
n-Hexane	86.18	6.57	12.1	0.0	0	0	
Mercury (total)	200.59	0.000292	0.0	0.000	0.0000	0.000	
Methyl Isobutyl Ketone (MIBK)	100.16	1.87	4.0	0.0	0	0	
Tetrachloroethylene (Perchloroethylene)	165.83	3.73	13.2	0.0	0	0	
Toluene	92.13	39.3	77.2	0.2	0	0	
Trichloroethylene (Trichloroethene)	131.39	2.82	7.9	0.0	0	0	
Vinyl chloride (Chloroethene)	62.5	7.34	9.8	0.03	0.0	0.00	
Xylenes (o-, m-, p-, mixtures)	106.17	12.10	27.4	0.1	0	0	
Total Air Toxics				0.46	0.00	0.00	

Note: Concentrations are based on default LFG concentrations published in EPA's AP-42 Section 2.4.

TABLE 6. FLARE 1 GREENHOUSE GAS EMISSIONS ESTIMATES

_		GHG Emission Factor	GHG <u>Emissions</u>		
Source	GHG	(kg/MMBTU)	(kg/yr)	(tpy)	Comments
Flare Flare Flare Flare	Methane (CH4) Nitrous Oxide (N2O) Carbon Dioxide (CO2) Carbon Dioxide (CO2)	0.0032 0.00063 52.07 n/a	56.4 11.1 918,253.8 651,086.0	0.06 0.01 1,010.08 716.19	Anthropogenic Anthropogenic Biogenic: CO ₂ from CH ₄ combustion Biogenic: CO ₂ "pass through" in LFG

Total LFG Throughput:	54.2	MMscf/yr
CH ₄ Content:	32.1%	
LFG Heat Content (HHV):	325.3	BTU/scf
CO ₂ Content:	22.8%	

Notes:

1. CH_4 and N_2O emission factors from Subpart C (Table C-2).

2. CO2 emissions that "pass through" as the CO2 fraction in LFG are calculated on a mass balance. 40 CFR Part 98 Subpart C does not provide emission factor.

3. EPA Part 98 does not require reporting of landfill flare emissions.

4. For completeness, both biogenic and anthropogenic GHG emissions are reported herein.

TABLE 7. FLARE 2 GREENHOUSE GAS EMISSIONS ESTIMATES

		GHG Emission Factor	GI <u>Emis</u>	IG <u>sions</u>	
Source	GHG	(kg/MMBTU)	(kg/yr) (tpy)		Comments
Flare Flare Flare Flare	Methane (CH ₄) Nitrous Oxide (N ₂ O) Carbon Dioxide (CO ₂) Carbon Dioxide (CO ₂)	0.0032 0.00063 52.07 n/a	111.5 22.0 1,814,650.3 1,286,674.2	0.12 0.02 1,996.12 1,415.34	Anthropogenic Anthropogenic Biogenic: CO ₂ from CH ₄ combustion Biogenic: CO ₂ "pass through" in LFG

Total LFG Throughput:	107.1	MMscf/yr
CH ₄ Content:	32.1%	
LFG Heat Content (HHV):	325.3	BTU/scf
CO ₂ Content:	22.8%	

Notes:

1. CH_4 and N_2O emission factors from Subpart C (Table C-2).

2. CO2 emissions that "pass through" as the CO2 fraction in LFG are calculated on a mass balance. 40 CFR Part 98 Subpart C does not provide emission factor.

3. EPA Part 98 does not require reporting of landfill flare emissions.

4. For completeness, both biogenic and anthropogenic GHG emissions are reported herein.

TABLE 8. LANDFILL GREENHOUSE GAS EMISSIONS ESTIMATES

		GI <u>Emis</u>	HG <u>sions</u>	
Source	GHG	(metric tons)	(tpy)	Comments
Landfill Landfill Landfill Landfill	Methane (CH ₄) Nitrous Oxide (N ₂ O) Carbon Dioxide (CO ₂) in uncaptured LFG Carbon Dioxide (CO ₂) from CH4 oxidation	78.6 n/a 235.3 116.4	86.62 n/a 259.27 128.27	See Note 5. See Note 4. Biogenic Biogenic

Collection Efficiency (CE):	95.0%		[Per Table HH-3]
Cumulative LFG Flow (Collected/Recovered):	161.33	MMscf/yr	
Recovered CH ₄ Quantity:	996.0	metric tons	[Eq. HH-4 at 0.0423 lb/cf CH ₄ density]
Recovered CO ₂ Quantity:	1,937.7	metric tons	
CH ₄ Content:	32.1%		
CO ₂ Content:	22.8%		
Annual Operating Hours Fraction (F _{REC}):	0.9387	hr/hr	
Oxidation Fraction:	35%		

Notes:

1. CH₄ and N₂O emission factors and global warming potential (GWP) values from 40 CFR Part 98 Subpart A (Table A-1) and Subpart C (Table C-2). See Notes 5 and 6.

2. Flare CO₂ emissions that "pass through" as the CO₂ fraction in LFG are calculated on a mass balance. 40 CFR Part 98 Subpart C does not provide emission factor.

3. EPA Part 98 does not require reporting of landfill flare emissions.

4. For completeness, both biogenic and anthropogenic GHG emissions are reported herein.

5. Fugitive emissions of N₂O from the landfill are considered to be negligable, as N₂O is not a typical constituent of LFG per AP-42 (Section 2.4).

6. Fugitive emissions of CH₄ are calculated based on 40 CFR Part 98 Subpart HH Equation HH-4, and generally per Equation HH-8 minus the 2nd term of HH-8, which is applicable to combustion unit emissions (calculated and reported separately).

ATTACHMENT 2

(AIR TOXICS DEMONSTRATION)

I certify to the best of my knowledge and belief formed after reasonable inquiry that this facility is in compliance with the toxic air pollutant requirements in COMAR 26.11.15 and 26.11.16.

Andrew Kays, Executive Director

Date

1-HOUR SCREENING ANALYSIS

Tox-A-Matic 2012 Gude Flare Brandon Donovan 3/15/2023

- 8 Typical hours of emissions per 8-hour work day
- 7 Typical days per week of emissions
- 52 Typical weeks per year of emissions
- no Building downwash (default is yes)
- 2.89 Screen3 or AERSCREEN model run maximum concentration (ug/m3) from a 1 lb/hr emission rate

CAS	Name	Emissions	Screening	Exempt	Small	AER	Screen 3 c	or AERSCRE	EN		Bomb
		Controlled	Level		Emitter 1		Impact	Small	% screen	Pass?	
		lb/hr	ug/m3				ug/m3	Emitter 2	Level		
				26.11.15.01B(5)	26.11.15.03B(3)	26.11.16.02A(4)		26.11.15.03B(4)			
	7647010 HYDROCHLORIC ACIE	D (HYDROG) 0.045833	29.832311			pass	0.1325		0.44	pass	

8-HOUR SCREENING ANALYSIS

Tox-A-Matic 2012 Gude Flare Brandon Donovan 3/15/2023

- 8 Typical hours of emissions per 8-hour work day
- 7 Typical days per week of emissions
- 52 Typical weeks per year of emissions
- no Building downwash (default is yes)
- 2.89 Screen3 or AERSCREEN model run maximum concentration (ug/m3) from a 1 lb/hr emission rate
- 0.7 8-hour multiplier (default is 0.7)

CAS	Name	Emissions	Screening	Exempt	Small	AER	Screen 3 or AERSCREEN		EN		Bomb
		Controlled lb/hr	Level ug/m3		Emitter 1		Impact ug/m3	Small Emitter 2	% screen Level	Pass?	
				26.11.15.01B(5)	26.11.15.03B(3)	26.11.16.02A(4)		26.11.15.03B(4)			
	7647010 HYDROCHLORIC ACID (HYDROC	3] 0.045833	165.271			pass	0.0927	,	0.06	pass	

ANNUAL SCREENING ANALYSIS

Tox-A-Matic 2012 Gude Flare Brandon Donovan 3/15/2023

8 Typical hours of emissions per 8-hour work day
7 Typical days per week of emissions
52 Typical weeks per year of emissions
no Building downwash (default is yes)
2.89 Screen3 or AERSCREEN model run maximum concentration (ug/m3) from a 1 lb/hr emission rate
0.08 Annual multiplier (default is 0.08)

CAS		Emissions Screening		AER	Screen 3 o	Bomb		
Name	Controlled	Level	Emitter 1		Impact	% screen	Pass?	
	lb/yr	ug/m3			ug/m3	Level		
			26.11.15.03B(3)	26.11.16.02A(4)				
7647010 HYDROCHLORIC ACID (HYDRO	GI 133.4667	0.7			0.0035	0.50	pass	