

Organics Management Plan Siting, Technology and Capacity Planning for Montgomery County

Presented to: Solid Waste Advisory Committee Montgomery County

Presented by: Regina Cagle Irr, P.E. Craig Coker

3 April 2024

AGENDA

A | Scope, Assumptions, and Methodology

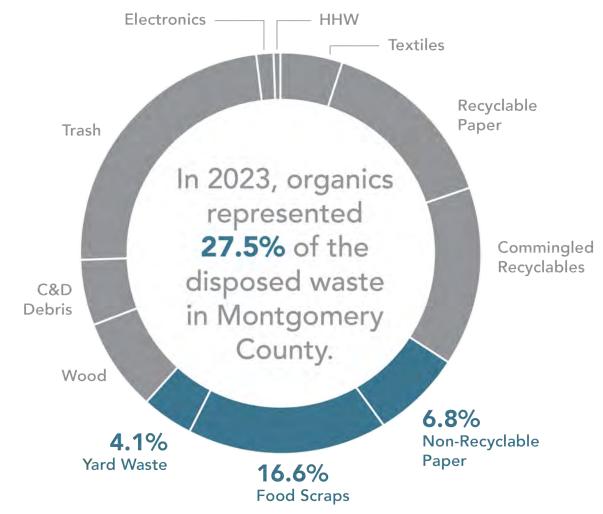
- B | Feedstock Projections
- C | Alternatives
- D | Next Steps

A | PROJECT SCOPE

- Evaluate capacity planning, technology, and siting for a County-owned organics processing facility
- Planning Period 2025-2045
- Organic feedstocks include food scrap, non-recyclable paper, and yard trim
- Considered residential and commercial organics sources

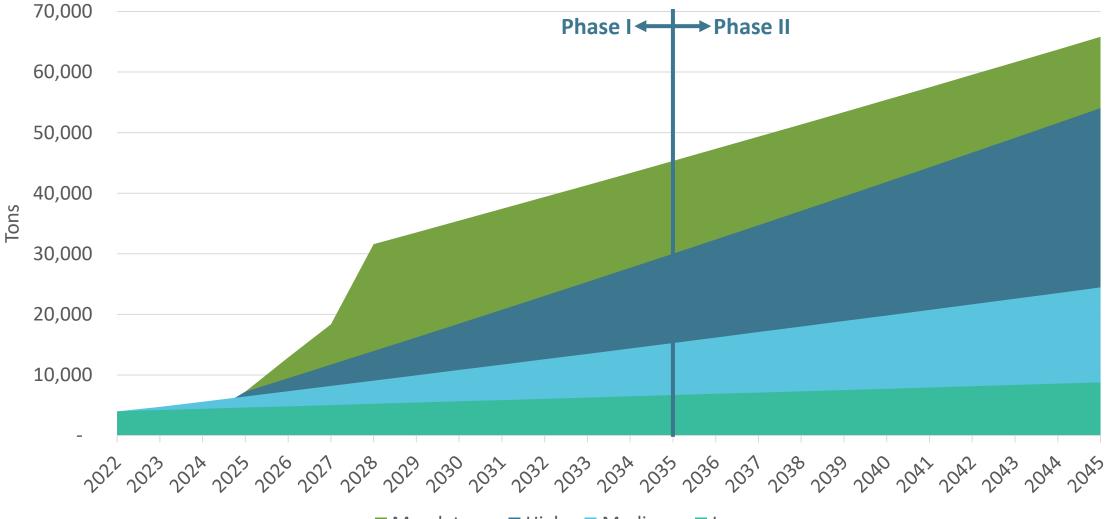
A | PROJECT ASSUMPTIONS

- **Projections** developed to estimate County's capacity needs
- Co-collection vs. separate **collection** considered for food scraps and yard trim
- Siting considered Shady Grove TS, MCYTCF, and Site 2, and assumed
 - Shady Grove TS remains the central material receiving location
 - Material transport from Shady Grove TS can continue by rail or truck
- **Technology** review included aerobic/anaerobic equipment appropriate for capacity need identified; thermal processing and unproven technologies not considered
- Capital and O&M costs include 30% contingency, for comparison of alternatives
- Material disposal at the RRF did not factor into the analysis

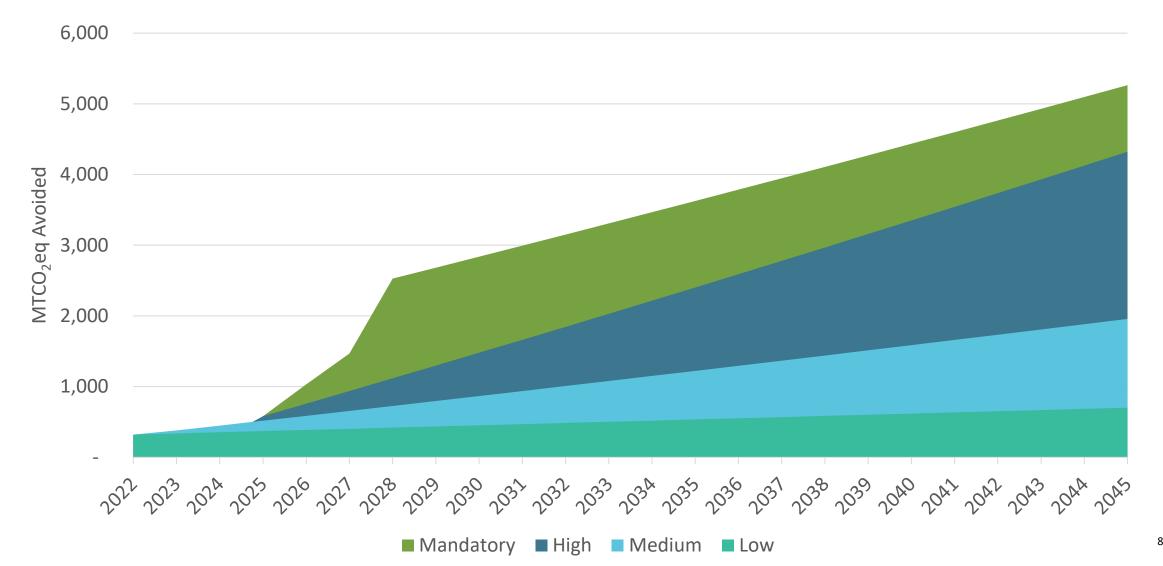

A | EVALUATION METHODOLOGY

- Weighted Matrix Methodology
 - Evaluation Factors developed by County and EA Team
 - Alternatives ranked based on total weighted score
- Weighted Matrix Evaluation utilized to rank options considered
 - Processing Technologies
 - Facility Siting
 - Final Alternatives

	able 5-0. Evaluation Criteria			
Criteria	Definitions			
System Factors				
1 – Relative Costs	A technology with lower capital and operating costs will score higher.			
2 – Ease of Construction	A technology that is easily constructed will score higher. This includes consideration of the County management of site development and processing technology installation.			
3 – Proven Experience	A technology with more current North American installations will score higher.			
4 – Reliability	A technology that minimizes process downtime of mechanical components will score higher.			
5 – Adaptability	A technology that is easily adaptable in layout to fit the site area, and expandable to process additional feedstock intake, will score higher.			
6 — Permitting	A permitting pathway that has greater definition and clarity of requirements will score higher. This considers permitting at the State and local level for site development around a given technology.			


Table 3-6. Evaluation Criteria

B ORGANICS IN MONTGOMERY COUNTY


6

B | FOOD SCRAP PROJECTIONS

■ Mandatory ■ High ■ Medium ■ Low

B GHG EMISSIONS AVOIDED

C | FINAL ALTERNATIVES OVERVIEW

- Final Alternatives
 - 5 alternatives developed based on top ranked technology and site
 - Represent options that are technically feasible
 - Other feasible options considered at high-level in report
- Analysis Boundary Conditions
 - No additional County-owned parcels were identified from GIS screening
 - Non-County-owned sites not considered
 - Material receiving at the Shady Grove TS
 - Material transport from Shady Grove TS by rail or truck
 - Food scrap and Yard Trim co-collection vs. separate collection

Technology	Ranking	
Aerated Static Pile	1	
Tunnel Reactor	2	
Agitated Bed	3	
Dry Fermentation	4	
Rotating Drum	5	
High Solids Plug Flow	6	
Wet (low-solids) CSTR	7	

Site	Ranking		
MCYTCF	1		
Shady Grove TS	2		
Site 2	3		

C OPTION 1 – ASP COMPOSTING AT MCYTCF

General Description

- Aerobic processing utilizing biocovers or fabric covers over compost piles
- Process controls to optimize material processing
- Management of contact water required

- Material receiving from Shady Grove TS
- Site upgrades to MCYTCF required
- Established technology familiar to regulators

C OPTION 2 – TUNNEL REACTOR AT SHADY GROVE TS

General Description

- Aerobic processing in sealed concrete bunkers
- High degree of process control to minimize odors and optimize material processing
- Minimal contact water generation

Major Considerations for Implementation

- Relocating current Shady Grove TS activities required, or acquisition of adjacent parcels
- Material receiving and processing at Shady Grove TS with curing off-site with significant transportation cost
- Significant capital costs for equipment and concrete construction

11 🖂

C OPTION 3 – AGITATED BED AT SITE 2

General Description

- Aerobic processing in long bays with mechanical auger, within odor-controlled building
- Effective system for large-scale operations
- Indoor processing yields little to no contact water
- High degree of process control

- Significant capital costs for equipment and building
- Material receiving from Shady Grove TS would require road access from RRF to Site 2

C | OPTION 4 – DRY FERMENTATION AD AT SHADY GROVE TS WITH IN-VESSEL TUNNEL REACTOR COMPOSTING AT MCYTCF

General Description

- Anaerobic digestion of food scrap and yard trim
- Enclosed system yields little to no contact water
- End products include digestate and biogas which require management
- MCYTCF upgrades required

- Material receiving and processing at Shady Grove TS with curing off-site
- Relocating current Shady Grove TS activities required, or acquisition of adjacent parcels
- Unclear permitting pathway and unfamiliar to regulators

C | OPTION 5 - DRY FERMENTATION AD AT SHADY GROVE TS WITH WINDROW COMPOSTING AT MCYTCF

General Description

- Anaerobic digestion of food scrap and yard trim
- Enclosed system yields little to no contact water
- End products include digestate and biogas which require management
- No MCYTCF upgrades required

- Material receiving and processing at Shady Grove TS with curing off-site
- Relocating current Shady Grove TS activities required, or acquisition of adjacent parcels
- Unclear permitting pathway and unfamiliar to regulators

C ALTERNATIVES RANKING

Option Description	Ranking	Total Capital Cost	Annual O&M Cost
Option 1 – ASP Composting at Montgomery County Yard Trim Composting Facility (MCYTCF)	1	\$31,235,000	\$7,580,000
Option 3 – Agitated Bed Composting at Site 2	2	\$89,632,000	\$8,430,000
Option 2 – In-Vessel Tunnel Reactor Composting at Shady Grove TS and Product Finishing At MCYTCF	3	\$62,811,000	\$9,130,000
Option 5 – Dry Fermentation Anaerobic Digestion at Shady Grove TS with Product Finishing at MCYTCF	4	\$107,866,000	\$10,180,000
Option 4 – Dry Fermentation Anaerobic Digestion at Shady Grove TS with Product Finishing at MCYTCF via Tunnel Reactor Composting	5	\$142,288,000	\$11,640,000

D | **NEXT STEPS**

- Project Pathway prior to Alternative Selection
 - Community input and/or negotiations
 - Re-location of processing activities currently at Shady Grove TS
- Project pathway after Alternative selection 2.5-4 years to operable facility
 - Issue RFQ/RFP for site design and permitting (3-6 months)
 - Develop Site Investigation and Site Design (12-18 months)
 - State and Local Permitting (12-18 months)
 - Project Bidding (3 months)
 - Facility Construction (12-18 months)
- Additional Programmatic Considerations
 - Material collection (co-collection vs. separate)
 - Outreach and Education

QUESTIONS?