

River Falls Drainage Assessment Study

Public Kickoff Meeting

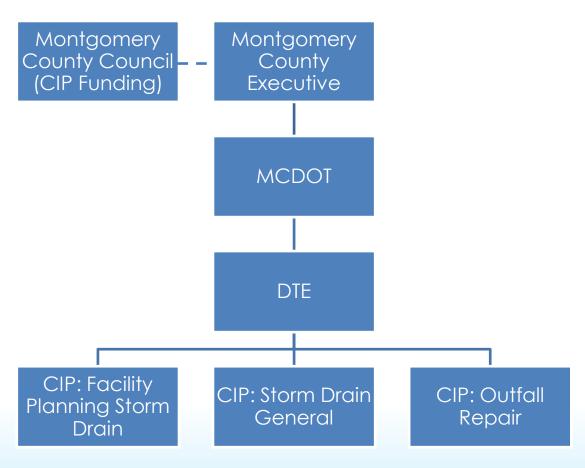
February 10, 2022

Agenda

- Introductions
- Drainage Program Overview
- Existing Storm Drain System
- Flooding Issues & History
- Work Done or In Progress
- Study Structure & Goals
- Scope of Work
- Questions

Introductions

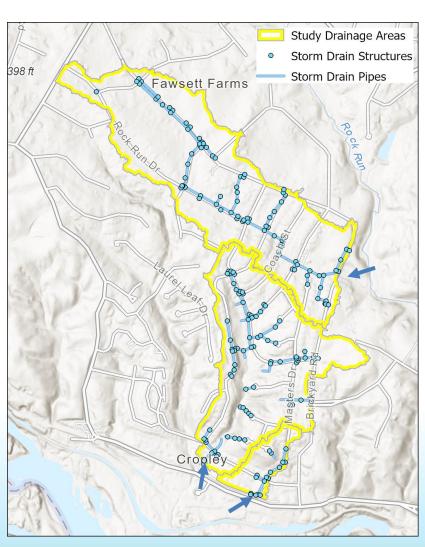
Key Organizations:


- MC DOT Montgomery County Department of Transportation
- DTE Division of Transportation Engineering
- DAR Drainage Assistance Request Program
- MC DEP Montgomery County Department of Environmental Protection

Key Personnel

- Dan Sheridan
 - Chief, DTE Design Section
- Kyle Hanley
 - DTE Engineer, DAR program Project Manager
- Ann English
 - DEP, RainScapes program manager
- Matt Spielman
 - DAR Program Consultant (GPI), Case Manager
- Bill Park
 - DAR Program Consultant (GPI), Engineering Services Manager

Drainage Program Overview



• CIP – Capital Improvement Project

Existing Storm Drain System

- Storm drain system separate from sanitary sewer (WSSC)
- Installed mostly in 1960's
- 200 pipes 22,000 linear feet
- >180 structures (manholes, inlets)
- Multiple piped streams
- Drainage Areas:
 - North Outfall east of Brickyard Rd into Rock Run (190 acres)
 - South Two outfalls to culverts under MacArthur Blvd (to C&O Canal) (136 acres)

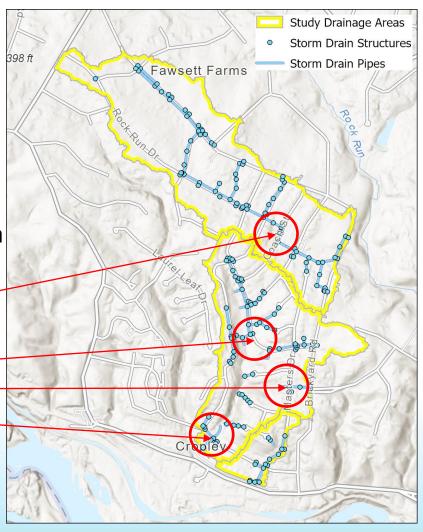
Storm Drain Design Capacity

- Capacity measured in cubic feet per second (cfs) of runoff water
- Drainage systems designed for specific storm sizes, called "return periods" or "design storms"
- Runoff volume calculated using 10-year (storm drains), 25- or 50-year (culverts) design storms
- Design storms are probabilistic:
 - 10-year = 10% chance each year
 - 100-year = 1% chance each year
- These are model storms, unusual storms (short duration downpours, Hurricane Ida) cause unpredictable flooding

Montgomery County Government

Drainage Design Criteria

Department of Transportation

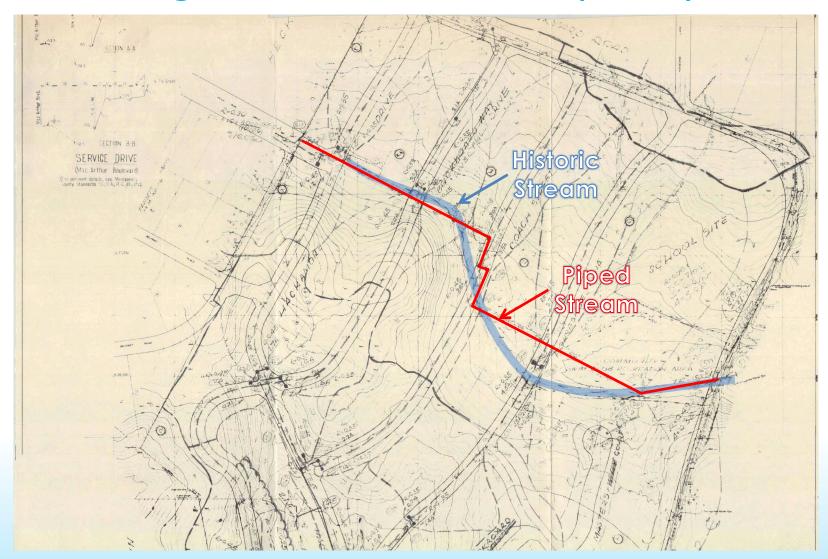

November 2013 . Rockville, Maryland

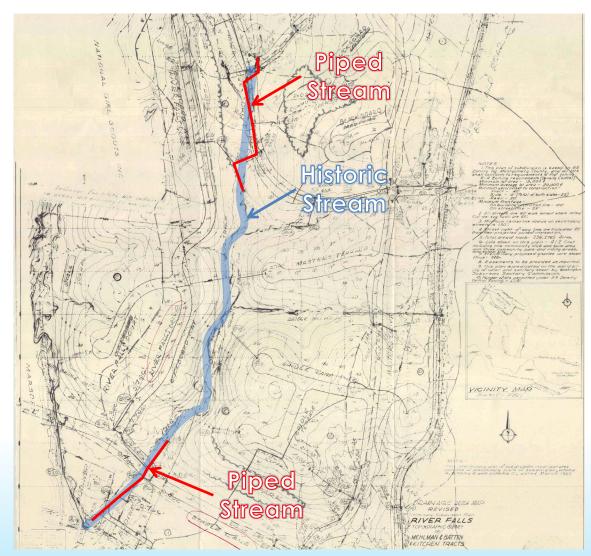
Revised Final

Drainage Issues

- Major Storm Events
 - May 5, 2015
 - July 8, 2019
 - August 7, 2019
 - September 10, 2020
 - September 1, 2021
 - 30 min intense duration
 - Exceeded 200-year storm
- Major Problem Spots
 - Low spots along piped stream (north)
 - Low spots on Hackamore
 - Low spots on Masters
 - Low spots along piped stream (south)
- Multiple other Problem Areas

Drainage Issues





Neighborhood Plan: 1963 (North)

Neighborhood Plan: 1963 (South)

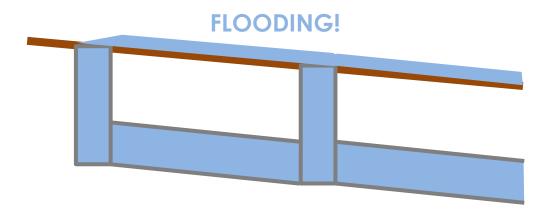
Piping Streams

- Natural streams usually have wide banks and broad floodplains
- Piped streams handle base flow and some storms, but flooding will try to follow historic path of stream

Completed Project: Stable Ln

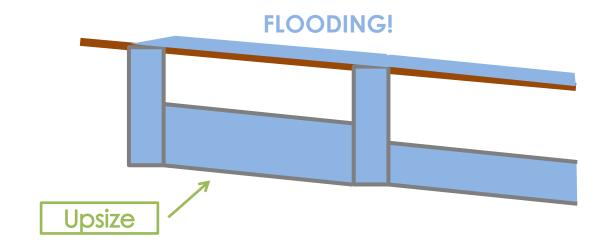
- Realigned pipe at road to reduce clogging
- Improved pipe headwall and stream to improve inlet efficiency
- No capacity increase

Upcoming Project: MacArthur Blvd Culvert


- Excavate opening and clear interior clogging
- Owned by US Army (DC aqueduct), MCDOT project
- In permitting with DPS, MDE, USACE

Problem with Piecemeal Approach

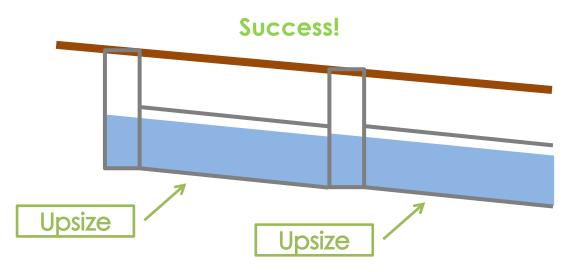
Effective localized capacity improvements are difficult



- Existing Condition:
 - Overwhelmed pipes

Problem with Piecemeal Approach

DAR program Countywide, limited budget



- Localized improvement near problem:
 - Less expensive, easier
 - Lower part of system restricts flow

Problem with Piecemeal Approach

Proper analysis and upgrade plan

- Upsize to outfall:
 - Successful
 - Expensive and difficult, requires special funding

Study Structure

- Preliminary Site Assessment
 - Gather existing plans, computations, GIS data
 - Identify known issues/complaints
- Field Data Collection
 - Verify storm drain configuration (field survey)
 - Pipe size and condition
 - Structure location, size, condition
 - Drainage area confirmation
- Drainage Assessment Report
 - Hydrologic & Hydraulic (H&H) Analysis
 - Hydrologic Drainage areas, impervious surfaces, soils
 - Hydraulic Pipe and structure capacity
 - Recommendations for Improvements

				PIPE	CC	MP	JTAT	rion	S	By:Geo. Date: 8 10			_	INLET COMPS					
	Area	ΣΑ	R	AR	S.AR	тс	1 :	Q	S % (min)	Pipe Size	V fps (full)	L	T.I.R	efs)	s %	Туре	Сар.	w	Remarks
	-131	-	0.4	484		70	4.5	718	1.22	54	13.7	200	024	8.7	Sing		15		803
	F.S. +	-	0.45	1.22	1.22	10:-	5.9	7.2	1.2	15	5.7	2.00	0.5.2	3.2	Sum	5	7.5		804
	3 T.3		0.45	0.58	1.80	10.6	50	10.6	1.0	18	0.0	40	11.0	3.4				1	814 (IA over)
֡	2 1.7	5.7	0.4-5		2.5G				2.1	18	8.5		0.10	55	10%	15	4.0		815 (1.512
	1-3.3	3.3	0.45	1.48	148	10-	59	8.8	0.65	18	5.0	_	-				_	_	
	3 1.5	4.5	0.45	0.54	505	10+	59	11.9	0.55	21	4.9	2000	-						
	6-	131.2	_	_	5298	20.2	4.5	238	1.5	54	14.9	230	0.26						
	5 2.7	2.7	0.35	0.94	194	10-	5.9	5.6	07.0	15	44.		-						
	1 -	1339	_		5392	.20.5	4-4-	237	1.5	5.4	14.9	1	-	_	ċ		_	_	
					-				_		. ,								
		1339	-	-	23:17	.20.5	4-4-	237	1.5	5.4	14.9	1	<u>-</u>		Ċ				

Key Milestones

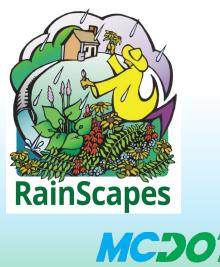
- Preliminary Site Assessment Feb. 25, 2022
- Field Data Collection Mar. 25, 2022
- Drainage Assessment Report Apr. 20, 2022
- Internal Review and Comment May 4, 2022
- Final Report and Public Meeting May 18, 2022

Scope of Work for Grant Study

- Funding is for study only
- Project selection, prioritization, and funding sources will be determined later
- Risk and severity can be reduced but some storm flooding unavoidable (e.g. Hurricane Ida)
- Grant Manager: Megan Granato, MD Dept.
 Of Natural Resources, Chesapeake
 and Coastal Services. Grant is funded by US
 EPA through MD DNR

Strategy for Best Outcome

- Holistic Approach
- Structural improvements inlets/pipes
- Retention improvements rain gardens, etc.
- Identify any large capacity issues for long-term CIPs
- Identify smaller improvements for existing programs
- Community stormwater improvements
 - DEP RainScapes



How You Can Help

- Even if you aren't affected, you can help reduce runoff
- Reduce Impervious
 - Remove unnecessary concrete/asphalt
 - Install pervious pavers instead of concrete/asphalt, replace existing
- **Increase Retention Time**
 - Rain Barrels
 - Rain Gardens
 - Tree Planting/Conservation Landscaping
- Every little bit helps!
- https://www.montgomerycountymd.gov/water/ rainscapes/

Questions?

Preparedness

- These storms are natural disasters, risk cannot be eliminated
- You don't need to be in a floodplain to get flood insurance
- Maryland Insurance Administration
- Montgomery County Office of Emergency Management and Homeland Security (OEMHS)
- Links provided in meeting invite

